Import DADA2 ASV Tables into phyloseq

ASV Tables Created in R

ASV tables created using the Bioconductor/R version of DADA2 are matrix files with samples as rows and taxa as columns. The taxa names are the sequences themselves. Because these matrices can be quite large they are most conveniently saved as compressed rds files. Read these files into R and create an experiment level phyloseq object containing an OTU or ASV table and representative sequences with the following R script:

# Load libraries:

# Read in the ASV file:
otu <- readRDS("seqtab_collapsed_nochim.rds")

# Get the representative sequences:
rep.seqs <- colnames(otu)
rep.seqs <- Biostrings::DNAStringSet(rep.seqs)

# Generate taxa names and assign them to the representative
# sequences and the ASV table taxa names (i.e. column names):
otu.names <- RDPutils::make_otu_names(1:length(rep.seqs))
colnames(otu) <- otu.names
names(rep.seqs) <- otu.names

# Import into phyloseq:
otu.table <- otu_table(otu, taxa_are_rows = FALSE)
expt <- phyloseq(otu.table, rep.seqs)

phyloseq-class experiment-level object
otu_table()   OTU Table:         [ 19891 taxa and 75 samples ]
refseq()      DNAStringSet:      [ 19891 reference sequences ]

The representative sequences can then be exported to a fasta file, classified by your favorite method, treed if appropriate, and the results read into R and combined with the phyloseq object. Export the representative sequences with the R code:

Biostrings::writeXStringSet(rep.seqs,  file = "rep_seqs.fasta", format = "fasta")

ASV Tables Created in QIIME2

QIIME saves its objects termed “artifacts” as qza files. These are actually zip files containing some extra information about the object. It is possible to extract the OTU (or ASV) table by simply unzipping the table object, or you can use QIIME2 commands to export a text version of the object.  If you use the dada2 plug-in, the taxa names for the ASV table are hashes that encode the sequences, rather than the sequences themselves. Therefore if you want to include representative sequences in your phyloseq object, you will have to extract or export them separately. Here are the QIIME2 commands  I use to put the required files in the sub-directory phyloseq:

# Export OTU table:
mkdir phyloseq
qiime tools export \
--input-path table.qza \
--output-path phyloseq

# Convert biom format to tab-separated text format:
biom convert \
-i phyloseq/feature-table.biom \
-o phyloseq/otu_table.tsv \

# Modify otu_table.txt to make it easier to read into R.
# Use sed to delete the first line and "#OTU ID" from the
# second line.
cd phyloseq
sed -i '1d' otu_table.tsv
sed -i 's/#OTU ID//' otu_table.tsv
cd ../

# Export representative sequences:
qiime tools export \
--input-path rep-seqs.qza \
--output-path phyloseq

The text files are then readily read into R and combined into a phyloseq object. Just remember that in this case taxa are rows of the OTU table.:

# Load libraries:
otu <- read.table("otu_table.tsv", row.names = 1, header = TRUE, sep = "\t")
otu.table <- phyloseq::otu_table(otu, taxa_are_rows = TRUE)
rep.seqs <- Biostrings::readDNAStringSet("dna-sequences.fasta", format = "fasta")
expt <- phyloseq::phyloseq(otu.table, rep.seqs)

phyloseq-class experiment-level object
otu_table() OTU Table: [ 19887 taxa and 75 samples ]
refseq() DNAStringSet: [ 19887 reference sequences ]


Rooting Unifrac Trees in phyloseq Objects

The method of rooting trees described in the post “Unifrac and Tree Roots” is now included in QsRutils beginning with version 0.3.2 as function root_phyloseq_tree. Given a phyloseq object with an unrooted tree, it returns the same type of phyloseq object with the tree rooted by the longest terminal branch.

Unifrac and Tree Roots


Unifrac distances have the attraction of including phylogenetic relatedness, based on a tree of the representative sequences, in the distances among samples calculated from an OTU table. FastTree is the usual method of choice in generating the tree, although USEARCH also provides a method. Both methods calculate unrooted trees, and calculation of Unifrac distances requires a rooted tree. The problem arises in how to best root the tree. I found a discussion of the problem on the phyloseq GitHub site (

For the smaller data sets of old, I relied on the midpoint function in the phangorn package to root my trees, but have since discovered that it is prone to failure with the large data sets generated with newer sequencing platforms. Phyloseq assigns a root randomly, which is certainly fast, but is that the best practice? How much difference does it make between runs? Assigning a seed only enables you to get the same result again. I decided to investigate using a large data set containing 31,938 OTUs.

As a first step, I simply made side-by-side plots for two PCoA ordinations made based on weighted Unifrac distances. I used pre-computed distance matrices for the two ordinations.

dw.pd.1 <- phyloseq::distance(expt, method = "wunifrac")
## Warning in UniFrac(physeq, weighted = TRUE, ...): Randomly assigning root
## as -- New.CleanUp.ReferenceOTU27288 -- in the phylogenetic tree in the data
## you provided.
dw.pd.2 <- phyloseq::distance(expt, method = "wunifrac")

## Warning in UniFrac(physeq, weighted = TRUE, ...): Randomly assigning root
## as -- 61057 -- in the phylogenetic tree in the data you provided.

The warning messages show that different OTUs were chosen for each of the runs, and while we expect the ordinations to be similar, visual inspection reveals some differences. <- ordinate(expt, method = "PCoA", distance = dw.pd.1)
plt.1 <- plot_ordination(expt,, color = "P_Location", title = "Trial 1") <- ordinate(expt, method = "PCoA", distance = dw.pd.2)
plt.2 <- plot_ordination(expt,, color = "P_Location", title = "Trial 2")
ggarrange(plt.1, plt.2, ncol = 2, legend = "bottom", common.legend = TRUE

Fig. 1: Two PCoA ordinations of the same data based on weighted Unifrac distances. Only the OTUs chosen to toot the tree differed.

Next I made a Procrustes analysis comparing the two ordinations.

scores.1 <-$vectors[ , 1:2]
scores.2 <-$vectors[ , 1:2]
pro <- procrustes(scores.1, scores.2, symmetric = TRUE)

Fig. 2: Plot of Procrustes errors between the two ordinations in Fig. 1.

The plot shows relative placement of samples according to the two distance matrices, with the greatest differences in the lower left quadrant.

protest(scores.1, scores.2, permutations = 99999)
## Call:  ## protest(X = dw.pd.1, Y = dw.pd.2, permutations = 99999, choices = c(1, 2)) 
## Procrustes Sum of Squares (m12 squared): 0.02374 
## Correlation in a symmetric Procrustes rotation: 0.9881 
## Significance: 1e-05 
## Permutation: free 
## Number of permutations: 99999

The correlation between the two distance matrices is very high, but not perfect. It is unlikely that such small differences would make a difference in analysis of community differences, by PERMANOVA, for example.

In the discussion mentioned above, Sebastian Schmidt proposed choosing an out group based on the longest tree branch terminating in a tip. His function for finding such an out group is:

pick_new_outgroup <- function(tree.unrooted){
require("ape") # ape::Ntip
# tablify parts of tree that we need.
treeDT <- 
         data.table(length = tree.unrooted$edge.length)
     )[1:Ntip(tree.unrooted)] %>% 
 cbind(data.table(id = tree.unrooted$tip.label))
 # Take the longest terminal branch as outgroup
 new.outgroup <- treeDT[which.max(length)]$id
 return(new.outgroup) }

Applying the function to our data gives us the out group to use to root our tree:

my.tree <- phy_tree(expt) <- pick_new_outgroup(my.tree)
## [1] "New.CleanUp.ReferenceOTU8001"

Then we can use this out group to root the tree in expt.

new.tree <- ape::root(my.tree,, resolve.root=TRUE)
phy_tree(expt) <- new.tree
## Phylogenetic tree with 31938 tips and 31937 internal nodes.
## Tip labels:
## 82502, New.CleanUp.ReferenceOTU38100, 70168, 100112, 113933, 13153, ...
## Node labels:
## Root, , 0.449, 0.000, 0.400, 0.000, ...
## Rooted; includes branch lengths.

Now that the tree is rooted, we can calculate the corresponding distance matrix and compare the ordination based on it to one we obtained with phyloseq's random root assignment method.

dw.og <- phyloseq::distance(expt, method = "wunifrac")
ord.og<- ordinate(expt, method = "PCoA", distance = dw.og)
plt.3 <- plot_ordination(expt,, color = "P_Location", title = "By pick_new_outgroup")
plot.3 <- ggarrange(plt.1, plt.3, ncol = 2, legend = "bottom", common.legend = TRUE)

Fig. 3: PCoA ordinations comparing result with randomly rooted tree (left) with tree rooted by longest terminal branch (right).

Again, visible inspection reveals some small differences between the ordinations. The overall difference between them can be determined with a Procrustes analysis.

scores.3 <- ord.og$vectors[ , 1:2]
pro <- procrustes(scores.1, scores.3, symmetric = TRUE)
protest(scores.1, scores.3, permutations = 99999)


## Call
## protest(X = scores.1, Y = scores.3, permutations = 99999)
## Procrustes Sum of Squares (m12 squared): 0.008256
## Correlation in a symmetric Procrustes rotation: 0.9959
## Significance: 1e-05
## Permutation: free
## Number of permutations: 99999

Fig. 4: Plot of Procrustes errors between ordinations in Fig. 3.

The difference between these two ordinations is certainly no greater than between those obtained with multiple runs taking random root assignments.

Conclusion: I was somewhat surprised that differences between multiple Unifrac calculations with random root assignment could be detected. I had surmised that distances among tree tips would stay the same, and therefore Unifrac distances among samples would stay the same. Perhaps they do, within rounding error.  The differences are certainly too small to impact discrimination of treatments in this data set. Still, I prefer the method based on rooting the tree by the longest branch terminating in a tip because it is not random, and by the function above is easily and quickly done.