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Introduction

The purpose of this document is to demonstrate how to generate RDPTools (Cole et al., 2014) output from
sequencing data and import it into the R/Bioconductor package phyloseq (McMurdie and Holmes, 2012).
Once this is done, the data can be analyzed not only using phyloseq’s wrapper functions, but by any method
available in R. For examples see the section Examples of Data Analysis below.

You may install R from the Comprehensive R Archive Network (CRAN) repository at http://cran.us.
r-project.org/. As an aid to working with R, we suggest that you also install RStudio, an IDE interface for R,
available at http://www.rstudio.com/. By loading the Rmd file included with the tutorial files (see below)
into RStudio, you can easily recreate the R portions of these tutorials on your own computer. And you can
get an explanation of how to use any function in a code block by placing the cursor anywhere in the function
name and pressing key F1.

RDPTools

The Ribosomal Database Project (RDP) at Michigan State University has long provided web-based tools for
processing pyrosequencing data. These tools were originally developed for handling data for bacterial and
archaeal 16S rRNA genes, but since then their capabilities have been expanded to include functional genes,
28S rRNA and ITS fungal sequences, and Illumina data. To handle the increased demands of analyzing
larger data sets, command line versions of the tools have been made available as RDPTools on GitHub
(https://github.com/rdpstaff/RDPTools). With these tools sequencing data can be analyzed by either a
“supervised” approach in which sequences are binned using the RDP classifier(Wang et al., 2007), or an
“unsupervised” approach in which sequences are clustered according to their similarities. Tutorials are available
on the RDP website (http://rdp.cme.msu.edu/index.jsp), and detailed instructions for installation and use of
the command line tools are available on GitHub.

At this time installation of RDPTools is practical only on Linux-like systems. Window users may use Ubuntu
Linux in Oracle’s VM Virtual Box, but with large data sets these programs are best run on a computer
cluster.

Phyloseq

Phyloseq is an R/Bioconductor package that provides a means of organizing all data related to a sequencing
project and includes a growing number of convenience wrappers for exploratory data analysis, some of which
are demonstrated below. But perhaps phyloseq’s greater utility is that it makes it easy to subset and merge
both samples and taxa. Methods for doing so are also demonstrated below.

If you need to install phyloseq in R, install it from Bioconductor with these commands:

source ("http://bioconductor.org/biocLite.R")
biocLite("phyloseq")
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RDPutils

This tutorial is concerned primarily with how the command-line programs in RDPTools can be used to
generate files to fully populate a phyloseq object with an OTU table, sample data table, classification
table, tree file, and reference sequences. RDP’s web-based tools are currently more limited, but the vignette
included in the R package RDPutils describes how to fully populate a phyloseq object using output from
the web-based tools.

In any event, if you use the supervised method you will need a function in RDPutils to import the classifier’s
result into phyloseq. See section Processing Classifier Output below. RDPutils depends on phyloseq
and reshape?2, so they should both be installed prior to installing RDPutils. Phyloseq also depends on
reshape?2, so reshape2 may be installed automatically when you install phyloseq. If it is not, you may
install reshape2 by either of two methods.

If using RStudio, reshape2 may be installed by clicking on “Packages,” “Install,” typing in “reshape2”
(without the quotation marks), and clicking “Install” Whenever installing packages in this manner, be sure
the “Install dependencies” box is checked.

Or from the R console, the reshape2 package may be installed with the command:
install.packages("reshape2", dependencies=TRUE)

To install RDPutils, download the tar ball from http://rdp.cme.msu.edu/download/users/RDPutils_ 1.4.2.
tar.gz and install it in R using the command:

install.packages("/path/RDPutils_1.4.2.tar.gz", type="source", repos=NULL)

If RDPutils_1.4.2.tar.gz is not in your R working directory, you must include the path (indicated by
/path/ in the command above) with the file name. Use forward slashes in the path even if you are using
Windows.

Other R Packages

The R portions of the tutorial below make use of several other R packages available from CRAN. These are:

e ggplot2
¢ GUniFrac
e phangorn
e Vegan

If necessary, these may be installed following the instructions for installation of reshape2 above.

Tutorial Files

Example data files used in this tutorial can be downloaded from http://rdp.cme.msu.edu/download/users/
RDPTools__phyloseq_tutorial.zip. There are two folders inside RDPTools_phyloseq_tutorial after un-
compressing the zip file, supervised and unsupervised. These contain example files such that all of the
RDPTools commands in section Generating Cluster Output (Unsupervised Method) can be run from
the unsupervised directory and all of the RDPTools commands in section Generating Classifier Output
(Supervised Method) can be run from the supervised directory. Example files for all of the R commands
in this tutorial are in the parent directory RDPTools_phyloseq_tutorial.

Some of the functions in phyloseq require a phylogenetic tree file. We recommend FastTree (http://www.
microbesonline.org/fasttree) for creation of the tree file.
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Generating Cluster Output (Unsupervised Method)

With RDPTools as of May 2014, it is possible to output results as a biom file with OTU table, classification
table, and sample data. Assuming RDPTools and FastTree are installed, the commands below generate
output to fill all phyloseq slots: otu_table, tax_table, sample_data, phy_tree, and refseq.

For this tutorial, the commands below are run from the directory C: /RDPTools_phyloseq_tutorial/unsupervised,
which contains aligned sample fasta files inside the sub-directory alignment. The alignment files were created
using RDP’s Infernal bacterial 16S rRNA aligner. For your own work you can use any of the following RDP
Aligners: Infernal bacterial and archaeal 16S Aligners, RDP fungal 28S Aligner, or Hmmer Aligner. Modify

the path to Clustering.jar as appropriate to your installation of RDPTools. Each command must be
entered as a single line. In this document, long commands are carried over to the next line(s) and indented

for readability.

A helpful hint: The aligned sample fasta files should be named exactly as you wish your samples to be named
in tables or figures to be generated from your data. The names should not contain prefixes or suffixes such as
aligned_ or _trimmed commonly introduced by previous processing steps.

Clustering

Complete-linkage clustering is performed by RDP’s mcClust routine in the following three steps:

Dereplicate:

java -Xmx2g -jar ~/RDPTools/Clustering.jar derep -m '#=GC_RF' -o derep.fa
all_seqgs.ids all_seqs.samples alignment/*.fasta

Calculate distance matrix:

java -Xmx2g -jar ~/RDPTools/Clustering.jar dmatrix --id-mapping
all_seqgs.ids --in derep.fa --outfile derep_matrix.bin -1 200
--dist-cutoff 0.1

Cluster:

java -Xmx2g -jar ~/RDPTools/Clustering.jar cluster --dist-file
derep_matrix.bin --id-mapping all_seqs.ids --sample-mapping
all_seqgs.samples —-—method complete --outfile all_seq_complete.clust

OTU File

If desired, you can also make a flat OTU table for distance = 0.03 that can be imported into R. This is a
tab-delimited text file with samples as rows and OTUs as columns.

java -Xmx2g -jar ~/RDPTools/Clustering.jar cluster_to_Rformat
all_seq_complete.clust . 0.03 0.03



Representative Sequences

To get representative sequences for each OTU, it is first necessary to merge all of the aligned sample fasta
files into one aligned fasta file. To import the representative sequences into phyloseq, they must be renamed
to match the cluster/OTU names.

Merge the aligned fasta files:

java -jar ~/RDPTools/AlignmentTools/dist/AlignmentTools. jar
alignment-merger alignment merged_aligned.fasta

Get and rename sequences:

java -Xmx2g -jar ~/RDPTools/Clustering.jar rep-seqs -c --id-mapping
all_seqgs.ids --one-rep-per-otu all_seq_complete.clust 0.03
merged_aligned.fasta

Create Biom file

Make a biom file containing only OTUs from the cluster file for distance 0.03:

java -Xmx2g -jar ~/RDPTools/Clustering.jar cluster-to-biom
all_seq_complete.clust 0.03 > all_seq_complete.clust.biom

Add Classification and Sample Data

The following command adds both classification and sample data to the biom file just created. The sample
data to be added (sam.data.txt in this example) is in the form of a tab-delimited text file with sample
names in the first column and attribute names in the first row. It is added with the -d switch in the command
line. The sample names must match the names of the aligned sample fasta files exactly. Alternatively, the
sample data file could be added later in R.

java -Xmx2g -jar ~/RDPTools/classifier.jar classify -c 0.5 -f biom -m
all_seq_complete.clust.biom -d sam.data.txt -o all_seq_complete.clust_classified.biom
all_seq_complete.clust_rep_seqs.fasta

Reference Sequences

Recent versions of phyloseq objects may hold the representative sequences themselves, but the alignment is
destroyed in the importation step. This is done by removing all s in the sequences, but not the -’s (which
pad the sequences to full length). Thus it makes sense to also remove the -’s here. It is also necessary to
remove the sequence descriptions before importing the representative sequences into phyloseq; this so that
the names match the OTU names exactly. Lower case nucleotides will be converted to upper case when
imported, so that does not need to be handled here.

Unalign sequences and remove descriptions:

java -Xmx2g -jar ~/RDPTools/Clustering.jar to-unaligned-fasta
all_seq_complete.clust_rep_seqgs.fasta | cut -f1 -4 ' ' >
unaligned_short_names.fasta



Tree File

If you have FastTree installed, you may tree the representative sequences.

Extract comparable sequences

If (as is the case in this tutorial), the alignment was produced by a model-based aligner such as Infernal or
Hmmer, first extract the comparable (model) positions for tree building:

java -Xmx2g -jar ~/RDPTools/Clustering.jar derep -f -o
all_seq_complete.clust_rep_seqs_modelonly.fasta rep_seqgs.ids
rep_seqgs.sample all_seq_complete.clust_rep_seqgs.fasta

Build the tree:

fasttree -nt -gtr < all_seq_complete.clust_rep_seqs_modelonly.fasta > my_expt_tree.nwk

Processing Cluster Output

Phyloseq includes a function for importing the biom, tree, and representative sequence files directly. In R,
set the working directory (RDPTools_phyloseq_tutorial for this tutorial), load phyloseq, and create the
phyloseq object clst.expt:

# setwd ("C:/RDPTools_phyloseq_tutorial”) # modify path as appropriate
suppressMessages (suppressWarnings (library(phyloseq)))
packageVersion("phyloseq")

## [1] '1.24.2"

clst.expt <- import_biom("all_seq_complete.clust_classified.biom",
treefilename="my_expt_tree.nwk",
refseqFunction=readDNAStringSet,
parseFunction=parse_taxonomy_qgiime)

clst.expt

## phyloseq-class experiment-level object

## otu_table() OTU Table: [ 3280 taxa and 8 samples ]
## sample_data() Sample Data: [ 8 samples by 4 sample variables ]
## tax_table()  Taxonomy Table: [ 3280 taxa by 6 taxonomic ranks ]

## phy_tree() Phylogenetic Tree: [ 3280 tips and 3278 internal nodes ]

If one is not able to use the command line RDPTools, the RDPutils package for R includes a vignette for
creating a phyloseq object from a cluster file, a set of corresponding representative sequences, and the
classification of the representative sequences.

Generating Classifier Output (Supervised Method)

The RDP classifier is provided with training sets for the identification of bacterial and archaeal 16S rRNA and
fungal 285 rRNA and ITS gene sequences, and can classify multiple samples at one time. In this example, we
use it to classify fungal 285 rRNA gene sequences and import the results into a phyloseq object. Clustering
is not appropriate in this case because the primers are too far apart to read through the entire sequence.



Instead, identical bar codes were put on both forward and reverse primers so that for each sample sequences
were obtained from each direction. Thus they could not be aligned, a necessary prerequisite to clustering, but
they could still be classified.

To follow the example below, use the sample data downloaded from http://rdp.cme.msu.edu/download/users/
RDPTools_ phyloseq tutorial.zip and run the command from the directory named supervised. Sample
fasta files are in the sub-directory sequences.

cd c:/RDPTools_phyloseq_tutorial/supervised
java -Xmx2g -jar ~/RDPTools/classifier.jar classify -g fungallsu
-c 0.5 -f filterbyconf -o test_classified.txt -h test_hier.txt sequences/*.fasta

Processing Classifier Output

The file test_hier.txt is then converted to a phyloseq object with the function hier2phyloseq in the
package RDPutils.

Open an R session and do the following:

# setwd ("C:/RDPTools_phyloseq_tutorial”) # modify path as appropriate
suppressWarnings (suppressMessages(library(phyloseq)))
packageVersion("phyloseq")

## [1] '1.24.2"

suppressPackageStartupMessages (library (RDPutils))
packageVersion("RDPutils")

## [1] '1.4.1°

Create the phyloseq object class.expt from classifier output in hier format.

class.expt <- hier2phyloseq("test_hier.txt")
class.expt

## phyloseq-class experiment-level object
## otu_table()  O0OTU Table: [ 615 taxa and 9 samples ]
## tax_table()  Taxonomy Table: [ 615 taxa by 6 taxonomic ranks ]

class.expt contains an OTU table and a taxonomy table.

Add sample data from a comma delimited file created in Excel. The sample names must match exactly.

sam.data <- read.csv(file="sample.data.csv", row.names=1, header=TRUE)
sample_data(class.expt) <- sam.data
class.expt

## phyloseq-class experiment-level object

## otu_table()  OTU Table: [ 615 taxa and 9 samples ]
## sample_data() Sample Data: [ 9 samples by 25 sample variables ]
## tax_table()  Taxonomy Table: [ 615 taxa by 6 taxonomic ranks ]

The classifier includes non-fungal 28S rRNA gene sequences to improve classification. The next step is to
remove all of the non-fungal OTUs.

Get rank names.

rank_names(class.expt)

## [1] "Domain" "Phylum" "Class" "Order" "Family" "Genus"
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Get unique domain names.

get_taxa_unique(class.expt, taxonomic.rank="Domain")

## [1] "Fungi" "Animalia"

## [3] "Eukaryota incertae sedis" "Viridiplantae"
## [5] "Alveolata" e

## [7] "Amoebozoa"

Subset to include only the Fungi.

fungi <- subset_taxa(class.expt, Domain=="Fungi')
fungi

## phyloseq-class experiment-level object

## otu_table()  OTU Table: [ 688 taxa and 9 samples ]
## sample_data() Sample Data: [ 9 samples by 25 sample variables ]
## tax_table() Taxonomy Table: [ 5688 taxa by 6 taxonomic ranks ]

get_taxa_unique(fungi, taxonomic.rank="Domain")

## [1] "Fungi"

fungi can now be used for data analysis. It is based on fungal sequences only and contains counts for
OTUs by sample, classification of those OTUs, and sample data such as treatment factors and environmental
variables.

Examples of Data Analysis

class.expt

First we will use class.expt to demonstrate some of the analyses possible once we have our data in a
phyloseq object. The nine samples in class.expt are 285 rRNA gene libraries prepared from soil collected
from three Wisconsin fields planted for at least 10 years with each of three crops: corn, switchgrass, and
mixed prairie species. Because the sequences could not be aligned and treed, class.expt contains only an
OTU table, taxonomy table, and sample data table. The tree and refseq slots in class.expt are empty.

Unless stated otherwise, the examples below make use of phyloseq functions and wrappers.

Inspect sample variables.

sample_variables (fungi)

## [1] "ext.int"  "treatment" "crop" "location" "labels"
## [6] IISOilll IIPII IlKll ||Ca|l IlMgll

## [11] |lS|| llznll IlBll IIMnll IlFell

## [16] "Cu" "A1l" "Na" "Total.C" "Total.N"
## [21] "pH" "Sand" "Silt" "Clay" "Texture"

List the crops.
unique (sample_data(fungi) [, "crop"])

## crop
## WIE.Co.1 Corn
## WIE.Pr.1 Prairie

## WIE.Sw.1 Switchgrass

Make a bar plot of phyla by crop. First agglomerate sequences by phyla.



fungi.p <- tax_glom(fungi, taxrank="Phylum")
plot_bar(fungi.p, x="crop", £ill="Phylum")

30000 -
Phylum
20000 - . Ascomycota
8 Basidiomycota
_c§ Blastocladiomycota
é Chytridiomycota
< Fungi incertae sedis
10000 -
Glomeromycota
unclass_Fungi
0 -
1 1 1
0 T (%)
e o =)
3 = g
[¢) =
Q
QD
[}
[0
crop

Values (number of sequences) are stacked in order in each bar, with the greatest at the bottom, and replicates
are depicted individually. Thus for a given phylum the replicates may not be contiguous.

Make separate plots for each crop.
plot_bar(fungi.p, x="Phylum", fill="Phylum", facet_grid=~crop)
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This presentation is easier to interpret. Notice, for example, that while Ascomycota is present in all samples,
it is much less abundant in two of the three corn replicates. Also, nearly all of the Chytridiomycota sequences

occur in two of the prairie samples.
Look at classes within Ascomycota (the most abundant phylum).

asco <- subset_taxa(fungi, Phylum="Ascomycota")
asco.c <- tax_glom(asco, taxrank="Class")
plot_bar(asco.c, x="Class", fill="Class", facet_grid=~crop)
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This plot is messy because there are so many classes and we have used phyloseq’s default values for plotting.
Phyloseq uses ggplot2 graphics. If we dig into how these graphics work, we can modify the plot for better
readability. We will do the same for plots later in this tutorial.

suppressPackageStartupMessages(library(ggplot2)) # Necessary to modify phyloseq graphs.
packageVersion("ggplot2")

## [1] '3.0.0'

library(grid) # Otherwise, function unit (below) is mot recognized;
# part of base R installation but must be called.
pl <- plot_bar(asco.c, x="Class", fill="Class", facet_grid=~crop)
pl <- pl + theme(legend.key.size = unit(0.3, "cm"),

axis.text.x = element_text(size=3, vjust=0),

legend.text = element_text(size=5))

pl
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We can also remove groups unclassified at the class level. These are likely disparate groups, so little can be
said about them. Removing them makes the plot slightly less busy.

classified <- as.vector(substr(tax_table(asco.c)[,"Class"], 0, 7)!="unclass")
asco.c.classified <- prune_taxa(classified, asco.c)
p2 <- plot_bar(asco.c.classified, x="Class", fill="Class", facet_grid=~crop)
p2 <- p2 + theme(legend.key.size = unit(0.3, "cm"),

axis.text.x = element_text(size=3, vjust=0),
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legend.text = element_text(size=5))

p2
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With some finagling you can reduce the number of classes in the plot further, say to only those representing
at least 1% of sequences in at least one sample. First extract the OTU table with samples in columns (the
orientation in phyloseq. Convert to percentages.

otu <- otu_table(asco.c.classified)
otu.pc <- prop.table(otu, margin = 2)*100

Get a logical vector of OTUs to keep.
keep <- apply(otu.pc, 1, max)>=1
table (keep)

## keep
## FALSE TRUE
#i# 13 14

Ounly 14 of the 27 OTUs/classes represent at least 1% of the sequences in at least one sample. Prune to these
14 classes.

temp <- prune_taxa(keep, asco.c.classified)

Plot as above.
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p3 <- plot_bar(temp, x="Class", fill="Class", facet_grid=~crop)
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You can easily plot this same information as a heat map.

NULL, sample.label="crop", taxa.label="Class")

method

plot_heatmap (temp,

Transformation introduced infinite values in discrete y-axis

## Warning
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Plot richness estimates for the entire fungal data set.

p4 <- plot_richness(fungi)
p4 + theme(axis.text.x = element_text(size=4))

## Warning: Removed 45 rows containing missing values (geom_errorbar).
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By most measures, the prairie samples are more diverse.
Inspect sample sizes. From the above bar plots it is evident that there are fewer sequences in the corn samples.

sample_sums (fungi)

## WIE.Co.1 WIE.Co.2 WIE.Co.3 WIE.Pr.1 WIE.Pr.2 WIE.Pr.3 WIE.Sw.1 WIE.Sw.2

## 1864 385 5842 9786 12403 6852 11239 4849
## WIE.Sw.3
# 5921

WIE.Co.2 should be removed for having too few sequences.

fungi.8 <- prune_samples(sample_names(fungi) !="WIE.Co.2", fungi)
sample_names (fungi.8)

## [1] "WIE.Co.1" "WIE.Co.3" "WIE.Pr.1" "WIE.Pr.2" "WIE.Pr.3" "WIE.Sw.1"
## [7] "WIE.Sw.2" "WIE.Sw.3"

You can also sub-sample the samples to have the same number of sequences. rngseed=TRUE sets the random
seed generator (to 711 by default) for reproducibility.

fungi.8.r <- rarefy_even_depth(fungi.8, rngseed=TRUE)

## “set.seed(TRUE)" was used to initialize repeatable random subsampling.
## Please record this for your records so others can reproduce.

## Try ~set.seed(TRUE); .Random.seed™ for the full vector

##o...
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## 1710TUs were removed because they are no longer
## present in any sample after random subsampling

## ...

sample_sums (fungi.8.r)

## WIE.Co.1 WIE.Co.3 WIE.Pr.1 WIE.Pr.2 WIE.Pr.3 WIE.Sw.1 WIE.Sw.2 WIE.Sw.3

##

1864

1864

1864

1864

1864 1864

Now make an NMDS ordination plot based on Bray distances.

ordl <- ordinate(fungi.8.r, method="NMDS", distance="bray")

##
##
#
#i#
##
##

Square root transformation
Wisconsin double standardization

Run
Run
Run
Run

[:2:
## ...
## ...

##

Run

## ...
#H# ...

##

Run

## ...
#H# ...

##
##

Run
Run

[:2:
#it ...

##
##

Run
Run

## ...
[:2:

##

Run

## ...
## ...
## ...

##
##

Run
Run

## ...
#H# ...

##

Run

## ...
[:2:

##

Run

## ...
#H# ...

##

Run

## ...

##

Run

## ...
#H# ...

0 stress 0.04353246
1 stress 0.2180039
2 stress 0.2262215
3 stress 0.04353172

New best solution

Procrustes:

Similar to
4 stress O

Procrustes:

Similar to
5 stress O

Procrustes:

Similar to
6 stress O
7 stress O

Procrustes:

Similar to
8 stress O
9 stress O

Procrustes:

rmse 0.0003044651
previous best

.04353174

rmse 2.808062e-05
previous best

.04353215

rmse 0.0002134629
previous best

.2165193
.043563175

rmse 3.841148e-05
previous best

.05283507
.04353179

rmse 4.50035e-05

Similar to previous best

10 stress 0.04353168

New best solution

Procrustes: rmse 6.990801e-05
Similar to previous best

11 stress 0.2165193

12 stress 0.04353168
Procrustes: rmse 4.429026e-05
Similar to previous best

13 stress 0.0435318
Procrustes: rmse 0.0001279522
Similar to previous best

14 stress 0.04353172
Procrustes: rmse 0.0002260578
Similar to previous best

15 stress 0.04357853

max resid 0.0005428531

max resid 4.497213e-05

max resid 0.0003717185

max resid 8.210201e-05

max resid 7.918342e-05

max resid 0.000112127

max resid 6.867676e-05

max resid 0.0002097576

max resid 0.0003734653

Procrustes: rmse 0.04493335 max resid 0.08582427

16 stress 0.04353227
Procrustes: rmse 0.0003179837
Similar to previous best

max resid 0.0005647814
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## Run 17 stress 0.05194343
## Run 18 stress 0.04353165

## ... New best solution

## ... Procrustes: rmse 6.456963e-05 max resid 0.000102943
## ... Similar to previous best

## Run 19 stress 0.0435321

## ... Procrustes: rmse 0.0002569775 max resid 0.0004465224
## ... Similar to previous best

## Run 20 stress 0.04353164

## ... New best solution

## ... Procrustes: rmse 3.685276e-05 max resid 5.952211e-05
## . Similar to previous best

## *x* Solution reached

pl <- plot_ordination(fungi.8.r, ordl, color="crop")

0.25-

0.00-

-0.25-

NMDS2

-0.50 -

-0.25 0.00 0.25

NMDS1

0.50

crop

Corn
Prairie

Switchgrass

The symbols always seem too small. You can plot larger ones over the top of the smaller ones thus:

pl <- pl + geom_point(size=5)
pl
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And of course you can always take a phyloseq object apart and use functions in other R packages such as
vegan, labdsv, ade4, ape.... and your own functions.

As an example, phyloseq does not provide a wrapper for plotting a cluster dendogram of the samples, but
you can do this in vegan (Oksanen et al., 2013).

First define functions to extract vegan-compatible OTU and sample data tables from a phyloseq object:

veganotu <- function(physeq) {
0TU <- otu_table(physeq)
if (taxa_are_rows(0TU)) {
0TU <- t(O0TU)

}
0TU <- as(0TU, "matrix")
return (0TU)

}
vegansam <- function(physeq) {
sam <- sample_data(physeq)
i <- sapply(sam, is.numeric)
j <- sapply(sam, is.character)
k <- sapply(sam, is.factor)
sam <- as.matrix(sam)
sam <- as.data.frame(sam)
sam[i] <- lapply(sam[i], as.numeric)
sam[j] <- lapply(sam[j], as.character)
sam[k] <- lapply(sam[k], as.factor)
return(sam)

18



And then use veganotu to extract the OTU table from fungi.8.r and plot a dendrogram based on Hellinger
distance and average linkage clustering.

suppressPackageStartupMessages(library(vegan))
otu <- veganotu(fungi.8.r)

otu.h <- decostand(otu, "hellinger")

otu.h.d <- vegdist(otu.h, "euclidean")
plot(hclust(otu.h.d, method="average"))

Cluster Dendrogram
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= = = =
otu.h.d

hclust (*, "average")

We can also extract the sample data and plot a PCA ordination based on the Hellinger distances with ellipses
and spiders differentiating the crops. When given only an OTU matrix, the rda function performs a principal
components analysis based on euclidean distances. So to get a PCA ordination based on Hellinger distances,
just supply an OTU matrix that has been Hellilnger transformed.

pca <- rda(otu.h)

plot(pca, display="sites", scaling=1, type="text")

sam.data <- vegansam(fungi.8.r)

ordiellipse(pca, groups=sam.data$crop, display="sites", scaling=1, kind="sd")

## Warning in chol.default(cov, pivot = TRUE): the matrix is either rank-
## deficient or indefinite

ordispider(pca, groups=sam.data$crop, display="sites", scaling=1)
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The result is similar to the NMDS plot, showing the corn and prairie samples well separated, with switchgrass
samples intermediate, more variable, and partially overlapping the corn samples. The cluster results yield a
similar interpretation. The warning message is because we have only two corn samples.

Clst.expt

There are additional possibilities when you have a tree file in your phyloseq object, as is the case with
clst.expt. The eight samples in clst.expt are 16S rRNA gene libraries prepared from microcosm experi-
ments conducted with sediments collected from Thompson Creek (TC in the sample names) and Choptank
River (CR). Replicate libraries (A and B) were prepared from the sediments as they were received in the
laboratory (Pr_R in the sample name), and from control samples after 15 weeks of incubation (Col5). For
this tutorial, the libraries were sub-sampled to 1,000 sequences per sample.

Because clst.expt contains a tree of the representative sequences, we can make ordination plots based on
unifrac distances among samples and tree plots showing OTU distributions among samples.

Make an PCoA ordination plot based on abundance based unifrac distances with the following commands:

ord2 <- ordinate(clst.expt, method="PCoA", distance="unifrac", weighted=TRUE)

## Warning in UniFrac(physeq, ...): Randomly assigning root as -- cluster_100
## -- in the phylogenetic tree in the data you provided.

p2 <- plot_ordination(clst.expt, ord2, color="Treatment",
title="Phyloseq's Weighted Unifrac")

p2 <- p2 + geom_point(size=5)

p2
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The GUniFrac package (Chen et al., 2012) available on CRAN can also be used to calculate unifrac distances
and has additional features. Unifrac distances are traditionally calculated on either presence/absence data,
or abundance data. The former can be affected by PCR and sequencing errors leading to a high number
of spurious and usually rare OTUs, and the latter can give undue weight to the more abundant OTUs.
GUniFrac’s methods include use of a parameter alpha that controls the weight given to abundant OTUs and
also a means of adjusting variances.

The function GUniFrac requires a rooted tree, but unlike phyloseq’s ordination function will not try to root
an unrooted one. We will apply mid-point rooting with the midpoint function from the phangorn package
(Schliep, 2011).

suppressPackageStartupMessages (library(GUniFrac))
packageVersion("GUniFrac")

## [1] '1.1¢

suppressPackageStartupMessages (library(phangorn))
packageVersion("phangorn")

## [1] '2.4.0'

ext.tree <- phy_tree(clst.expt)
new.tree <- midpoint(ext.tree)
com <- veganotu(clst.expt)
unifracs <- GUniFrac(com, new.tree, alpha = c(0, 0.5, 1))$unifracs
# We can extract a variety of distance matrices with different weightings.
dw <- unifracs[, , "d_1"] # Weighted UniFrac
du <- unifracs[, , "d_UW"] # Unweighted UniFrac
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dv <- unifracs[, , "d_VAW"] # Variance adjusted weighted UniFrac
d0 <- unifracs[, , "d_0"] # GUniFrac with alpha O
d5 <- unifracs[, , "d_0.5"1 # GUniFrac with alpha 0.5
# use wegan's cmdscale function to make a PCoA ordination from a distance matriz.
pcoa <- cmdscale(dw, k = nrow(com) - 1, eig = TRUE, add = TRUE)
# Use phyloseq's plotting function to generate a ggplot.
plot_ordination(clst.expt, pcoa, color="Treatment",
title="GUniFrac Weighted Unifrac") + geom_point(size=>5)

GUniFrac Weighted Unifrac
®

0.05-
‘ Treatment
@ CR_15Wks
N 0.00-
= @® CRRcd
&)
® @ T1C_15Wks
@ TC_Rcd
-0.05-
o
o
o
_010- 1 1 1 1 1 1
-0.15 -0.10 -0.05 0.00 0.05 0.10

Dim1

Compare the above method to phyloseq’s wrapper function; the results are the same.

Now compare the results using other distance matrices.

pcoa <- cmdscale(du, k = nrow(com) - 1, eig = TRUE, add = TRUE)
plot_ordination(clst.expt, pcoa, color="Treatment",
title="GUniFrac Unweighted Unifrac") + geom_point(size=5)
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Unweighted means that the OTU table is first converted to presence/absence data. Replicates are very close

to each other.

pcoa <- cmdscale(d5, k = nrow(com) - 1, eig = TRUE, add = TRUE)
plot_ordination(clst.expt, pcoa, color="Treatment",
title="GUniFrac, alpha=0.5") + geom_point(size=5)
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GUniFrac, alpha=0.5
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With alpha=0.5, abundance is still taken into account, but its importance is not as great as with the weighted
option. As should be expected, results are intermediate between the weighted and unweighted versions. (As
sometimes happens with ordination but is of no importance, the signs for the first axis are reversed from the
previous plot.)

Let us examine the distribution of taxa among samples by making a tree plot of the 20 most abundant taxa.

clst.expt.20 = prune_taxa(names(sort(taxa_sums(clst.expt), TRUE) [1:20]), clst.expt)
tree.plot.l <- plot_tree(clst.expt.20, color="Treatment", size="abundance',
label.tips="taxa_names", text.size=3, ladderize="left")
tree.plot.l <- tree.plot.l + theme(legend.position = "bottom",
legend.title = element_text(size=12),
legend.key = element_blank())
tree.plot.1
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This plot makes it easy to pick out both temporal and source differences in the distributions of OTUs, and
see how closely related they are at the same time. It is simple to replace the cluster number with a taxon

name if you wish:

tree.plot.2 <- plot_tree(clst.expt.20, color="Treatment", size="abundance",

tree.plot.2 <- tree.plot.2 + theme(legend.position =

tree.plot.2

label.tips="Genus", text.size=3, ladderize="left")
"bottom",

legend.title = element_text(size=12),

legend.key = element_blank())
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For further examples using phyloseq, see the phyloseq GitHub page at https://github.com/joey711/phyloseq.
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